Simultaneous overexpression of Oct4 and Nanog abrogates terminal myogenesis.
نویسندگان
چکیده
Oct4 and Nanog are two embryonic stem (ES) cell-specific transcription factors that play critical roles in the maintenance of ES cell pluripotency. In this study, we investigated the effects of Oct4 and Nanog expression on the differentiation state of myogenic cells, which is sustained by a strong positive feedback loop. Oct4 and Nanog, either independently or simultaneously, were overexpressed in C2C12 myoblasts, and the expression of myogenic lineage-specific genes and terminal differentiation was observed by RT-PCR. Overexpression of Oct4 in C2C12 cultures repressed, while exogenous Nanog did not significantly alter C2C12 terminal differentiation. The expression of Pax7 was reduced in all Oct4-overexpressing myoblasts, and we identified a major Oct4-binding site in the Pax7 promoter. Simultaneous expression of Oct4 and Nanog in myoblasts inhibited the formation of myotubes, concomitant with a reduction in the endogenous levels of hallmark myogenic markers. Furthermore, overexpression of Oct4 and Nanog induced the expression of their endogenous counterparts along with the expression of Sox2. Using mammalian two-hybrid assays, we confirmed that Oct4 functions as a transcriptional repressor whereas Nanog functions as a transcriptional activator during muscle terminal differentiation. Importantly, in nonobese diabetic (NOD) severe combined immunodeficiency (SCID) mice, the pluripotency of C2C12 cells was conferred by overexpression of Oct4 and Nanog. These results suggest that Oct4 in cooperation with Nanog strongly suppresses the myogenic differentiation program and promotes pluripotency in myoblasts.
منابع مشابه
Concurrent Expression of Oct4 and Nanog Maintains Mesenchymal Stem-Like Property of Human Dental Pulp Cells
Human dental pulp stem cells (DPSCs), unique mesenchymal stem cells (MSCs) type, exhibit the characteristics of self-renewal and multi-lineage differentiation capacity. Oct4 and Nanog are pluripotent genes. The aim of this study was to determine the physiological functions of Oct4 and Nanog expression in DPSCs. Herein, we determined the critical role of an Oct4/Nanog axis modulating MSCs proper...
متن کاملCoexpression of gene Oct4 and Nanog initiates stem cell characteristics in hepatocellular carcinoma and promotes epithelial-mesenchymal transition through activation of Stat3/Snail signaling
BACKGROUND Oct4 and Nanog are key regulatory genes that maintain the pluripotency and self-renewal properties of embryonic stem cells. We previously reported that the two stemness markers were tightly associated with cancer progression and poor outcomes of hepatocellular carcinoma. In this study, we demonstrate that coexpression of Oct4/Nanog modulates activation of signal transducer and activa...
متن کاملTranscription factor heterogeneity and epiblast pluripotency.
Stem cells are defined by the simultaneous possession of the seemingly incongruent properties of self-renewal and multi-lineage differentiation potential. To maintain a stem cell population, these opposing forces must be balanced. Transcription factors that function to direct pluripotent cell identity are not all equally distributed throughout the pluripotent cell population. While Oct4 levels ...
متن کاملConserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells.
The genetic networks controlling stem cell identity are the focus of intense interest, due to their obvious therapeutic potential as well as exceptional relevance to models of early development. Genome-wide mapping of transcriptional networks in mouse embryonic stem cells (mESCs) reveals that many endogenous noncoding RNA molecules, including long noncoding RNAs (lncRNAs), may play a role in co...
متن کاملNanog, Oct4 and Tet1 interplay in establishing pluripotency
A few central transcription factors inside mouse embryonic stem (ES) cells and induced pluripotent stem (iPS) cells are believed to control the cells' pluripotency. Characterizations of pluripotent state were put forward on both transcription factor and epigenetic levels. Whereas core players have been identified, it is desirable to map out gene regulatory networks which govern the reprogrammin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 297 1 شماره
صفحات -
تاریخ انتشار 2009